Extreme resistance of superhydrophobic surfaces to impalement: reversible electrowetting related to the impacting/bouncing drop test.

نویسندگان

  • P Brunet
  • F Lapierre
  • V Thomy
  • Y Coffinier
  • R Boukherroub
چکیده

The paper reports on the comparison of the wetting properties of superhydrophobic silicon nanowires (NWs), using drop impact impalement and electrowetting (EW) experiments. A correlation between the resistance to impalement on both EW and drop impact is shown. From the results, it is evident that when increasing the length and density of NWs (i) the thresholds for drop impact and EW irreversibility increase and (ii) the contact-angle hysteresis after impalement decreases. This suggests that the structure of the NW network could allow for partial impalement, hence preserving the reversibility, and that EW acts the same way as an external pressure. The most robust of our surfaces shows a threshold to impalement higher than 35 kPa, while most of the superhydrophobic surfaces tested so far have impalement thresholds smaller than 10 kPa.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black?

Superhydrophobic surfaces resisting water penetration into their texture under dynamic impact conditions and offering simultaneously additional functionalities can find use in a multitude of applications. We present a facile, environmentally benign, and economical fabrication of highly electrically conductive, polymer-based superhydrophobic coatings, with impressive ability to resist dynamic wa...

متن کامل

How superhydrophobicity breaks down.

A droplet deposited or impacting on a superhydrophobic surface rolls off easily, leaving the surface dry and clean. This remarkable property is due to a surface structure that favors the entrainment of air cushions beneath the drop, leading to the so-called Cassie state. The Cassie state competes with the Wenzel (impaled) state, in which the liquid fully wets the substrate. To use superhydropho...

متن کامل

Electrowetting on a polymer microlens array.

This paper reports on the electrowetting behavior of a flexible poly(dimethylsiloxane) (PDMS) microlens array. A Cr and Au double-layered electrode was formed on an array of microlenses with diameters of 10 microm and heights of 13 microm. A deposition of parylene and a coating of Teflon were followed for electrical insulation as well as for enhancement of the hydrophobicity. On the nearly supe...

متن کامل

Reversible electrowetting of vertically aligned superhydrophobic carbon nanofibers.

Reversible electrostatically induced wetting (electrowetting) of vertically aligned superhydrophobic carbon nanofibers has been investigated. Carbon nanofibers on a 5 x 5 microm pitch were grown on Si substrates, electrically insulated with a conformal dielectric, and hydrophobized with fluoropolymer. This nanostructured scaffold exhibited superhydrophobic behavior for saline (theta approximate...

متن کامل

Heat exchange between a bouncing drop and a superhydrophobic substrate.

The ability to enhance or limit heat transfer between a surface and impacting drops is important in applications ranging from industrial spray cooling to the thermal regulation of animals in cold rain. When these surfaces are micro/nanotextured and hydrophobic, or superhydrophobic, an impacting drop can spread and recoil over trapped air pockets so quickly that it can completely bounce off the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 24 19  شماره 

صفحات  -

تاریخ انتشار 2008